Math Definitions

Card Set Information

Math Definitions
2012-01-04 17:49:34
Math Definition

This is a review of Math Definitions in Chapter 1 - 6
Show Answers:

  1. Arithmetic Operation
    Addition, subtraction, multiplication and division
  2. Expression
    A collection of numbers, operation signs and inclusion symbols that stand for a number
  3. Evaluating
    To evaluate an expression means to find the number for which the expression stands for
  4. Variable
    A letter that represents a number
  5. Substituting
    Replace a variable with a constant
  6. Equation
    A sentance which says that one expression is equal to another expression
  7. Solution
    A number you can substitute for the variable that makes the sentance true
  8. Transforming an Equation
    Do the same operation to each member of the equation
  9. Additive Inverses, or Opposites
    Two numbers are if their sum equals zero
  10. Positive Number
    Greater than zero
  11. Negative Numbers
    Less than zero
  12. Integers
    Numbers that do not include the fractions in between them (-3, -2, -1, 0, 1, 2, 3)
  13. Real Numbers
    All numbers on the number line, filling the entire line, leaving no gaps
  14. Subtraction
    Adding its opposite
  15. Multiplicative Inverse, or Reciprocal
    Two nonzero numbers are if their product equals 1
  16. Commute
    Interchange two numbers positions
  17. Associate
    Group two numbers in an expression with a parentheses so that the operation between them is done first
  18. Property
    A fact that is true concerning a mathematical system
  19. Axiom
    A property that forms the basis of a mathematical system, it is true without proof
  20. Distributive Axiom
    x (y + z) = xy + xz
  21. Multiplication Distributes Over Subtraction (Property)
    x (y - z) = xy - xz
  22. Like Terms
    Two terms with the same variables raised to the same powers
  23. Numerical Coefficient
    The constant that is multiplied by the variables
  24. Common Factor
    A factor of each term in the expression
  25. Commutative Axiom for Addition
    x + y = y + x
  26. Commutative Axiom for Multiplication
    xy = yx
  27. Associative Axiom for Addition
    (x + y) + z = x + (y + z)
  28. Associative Axiom for Multiplication
    (xy)z = x(yz)
  29. Distributive Axiom for Multiplication Over Addition
    x(y + z) = xy + xz
  30. Additive Identity Axiom
    x + 0 = x
  31. Multiplicative Identity Axiom
    x(1) = x
  32. Additive Inverse Axiom
    x + (-x) = 0
  33. Multiplicative Inverse Axiom
    x(1/x) = 1
  34. Multiplication Property of -1
    -1(x) = -x
  35. Multiplication Property of 0
    0(x) = 0
  36. Transitive Axiom of Equality
    If x = y and y = z, then x = z
  37. Symmetric Axiom of Equality
    If x = y, then y = x
  38. Reflexive Axiom of Equality
    x = x
  39. Addition Property of Equality
    If x = y, then x + z = y + z
  40. Multiplication Property of Equality
    If x = y, then xz = yz
  41. Identity
    An equation that is true for all values of the variable
  42. Conditional Equation
    One that is true for some values of the variable and not for other values of the variable
  43. Polynomial
    An expression that has no operations other than addition, subtraction, and multiplication by or of the variable(s)
  44. Degree
    (Of a polynomial with one variable) is the exponent of the highest power of that variable
  45. Factoring a Polynomial
    Transform a polynomial to a product of two or more factors
  46. Prime Polynomial
    A polynomial whose onlu factors are 1 and the polynomial itself
  47. Conjugate Binomial
    Binomials that are the same except for the sign between the terms
  48. Difference of Two Squares
    A(squared) - b(squared = (a +b)(a-b)
  49. Square Root
    (Square Root of N)(Squared) = n
  50. Rational Number
    Number that can be written as a ratio of two integers
  51. Irrational Number
    A real number that can't be written as a ration of two integers
  52. Closure Under Multiplication
    If x and y are any real numbers, then xy is a unique real number
  53. Closure Under Addition
    If x and y are any real numbers, then x + y is a unique reak number
  54. Closure
    • A set of numbers is closed under an operation if there is just one answer, and the answer is in the given set
    • That is,
    • (number in set)(operation)(number in set)
    • = (unique number in set)
  55. Quadrative Formula
    x equals the opposite of b, plus or minus the square root of the quantity b squared minus 4ac, all divided by 2a
  56. Absolute Value
    The number itself or the opposite of the number, whichever is positive
  57. Solving an Equation
    Writing a solution set
  58. Square Root Property of Equality
    • If two positve numbers are equal, then their positive square roots are equal
    • if a = b, then -( a = -( b
  59. Square Root of a Perfect Square
    -( ( number)2 = |number|
  60. Verticle Motion Formula
    d = rt - 5t2
  61. Discriminant
    the expression b2 - 4ac