stream chipers
Block Chipers
is a symmetric key cipher where plaintext digits are combined with a pseudorandom cipher digit stream (keystream). In a stream cipher each plaintext digit is encrypted one at a time with the corresponding digit of the keystream, to give a digit of the ciphertext stream. An alternative name is a state cipher, as the encryption of each digit is dependent on the current state. In practice, a digit is typically a bit and the combining operation an exclusive-or (XOR).The pseudorandom keystream is typically generated serially from a random seed value using digital shift registers. The seed value serves as the cryptographic key for decrypting the ciphertext stream.Stream ciphers represent a different approach to symmetric encryption from block ciphers. Block ciphers operate on large blocks of digits with a fixed, unvarying transformation. This distinction is not always clear-cut: in some modes of operation, a block cipher primitive is used in such a way that it acts effectively as a stream cipher. Stream ciphers typically execute at a higher speed than block ciphers and have lower hardware complexity. However, stream ciphers can be susceptible to serious security problems if used incorrectly (see stream cipher attacks); in particular, the same starting state (seed) must never be used twice.
a block cipher is a deterministic algorithm operating on fixed-length groups of bits, called blocks, with an unvarying transformation that is specified by a symmetric key. Block ciphers are important elementary components in the design of many cryptographic protocols, and are widely used to implement encryption of bulk data.The modern design of block ciphers is based on the concept of an iterated product cipher. Product ciphers were suggested and analyzed by Claude Shannon in his seminal 1949 publication Communication Theory of Secrecy Systems as a means to effectively improve security by combining simple operations such as substitutions and permutations.[1] Iterated product ciphers carry out encryption in multiple rounds, each of which uses a different subkey derived from the original key. One widespread implementation of such ciphers is called a Feistel network, named after Horst Feistel, and notably implemented in the DES cipher.[2] Many other realizations of block ciphers, such as the AES, are classified as substitution-permutation networks.[3]The publication of the DES cipher by the U.S. National Bureau of Standards (now National Institute of Standards and Technology, NIST) in 1977 was fundamental in the public understanding of modern block cipher design. In the same way, it influenced the academic development of cryptanalytic attacks. Both differential and linear cryptanalysis arose out of studies on the DES design. Today, there is a palette of attack techniques against which a block cipher must be secure, in addition to being robust against brute force attacks.Even a secure block cipher is suitable only for the encryption of a single block under a fixed key. A multitude of modes of operation have been designed to allow their repeated use in a secure way, commonly to achieve the security goals of confidentiality and authenticity. However, block ciphers may also be used as building blocks in other cryptographic protocols, such as universal hash functions and pseudo-random number generators.