Physiology - Final

Home > Preview

The flashcards below were created by user akhan on FreezingBlue Flashcards.


  1. transcalciferin (TC)
    1,25(OH)2D3 binding globulin
  2. Receptor for PTH
    GsPCR -> cAMP (bone, kidney distal tubular cells)
  3. Overall effects on serum Ca and phosphate level: PTH, 1,25-D3, calcitonin
    • increase and decrease
    • increase and increase
    • decrease and decrease
  4. primary hyperparathyroidism
    • benign parathyroid neoplasm (adenoma) -> excess PTH secretion -> hypercalcemia -> kidney stones
    • mild
  5. Secondary hyperparathyroidism
    • calcium/vit D deficiency, renal disease -> hypocalcemia -> excessive PTH secretion
    • serious due to low [Ca]
  6. hypoparathyroidism
    surgical/autoimmune damage to parathyroid gland -> low PTH -> low [Ca], high phosphate, -> nerve and muscle hyperexcitability and hypocalcemic tetany
  7. minute ventilation (VE)
    alveolar ventilation (VA)
    • resting tidal volume (VT) x f
    • (VT - VD) x f
  8. Physiological dead space =
    anatomical dead space (conducting airways; body weight in lb) + alveolar dead space (0 in healthy young adults)
  9. lung compliance C =
    fibrosis
    emphysema
    • dV/dP
    • low compliance, stiff lungs
    • loss of elastic tissue, overly-compliant
  10. _________ is secreted by _____ to reduce the surface tension between the alveoli.
    • Surfacant
    • type II pneumocytes
  11. Laminar flow follows the law: V =
    • dP/R
    • V is flow, the volume passed per unit time
    • R is the resistance = 8 x viscosity x length / (pi x r^4)
    • r is the radius of the tube
  12. Turbulent flow happens when
    • Reynold's number > 2000
    •  = density x velocity x diameter / viscosity
    • always slower than laminar flow, happens in asthma
    • therapy
  13. Velocity =
    flow / total cross section area
  14. PO2, PH2O, and PCO2
    in dry air
    trachea
    alveolar
    • 160mmHg, none, none
    • 150mmHg, 47mmHg, none
    • 100mmHg, 47mmHg, 40mmHg
  15. Total O2 content =
    • dissolved O2 + Hb-bound O2
    • = alpha x PO2 + [Hb] x saturation x 1.34
    • alpha: solubility of O2, 0.003ml/dl
  16. Right shift of Hb-O2 dissociation curve happens when
    • pH decreases
    • T increases
    • PCO2 increases
  17. polycythemia
    anemia
    CO poisoning
    • high [Hb], higher max O2 content
    • low [Hb], lower max O2 content
    • lower max O2 content, left shift of the curve
  18. PAO2 (alveolar O2) =
    indication for hypoventilation/hyperventilation
    • PIO2 - PACO2/R
    • PIO2 depends on the air, mostly stable
    • PACO2 is indirectly proportional to VA
    • R is usually 0.8, can be 1 if pure carb diet
    • hypovent -> decrease VA -> increase PACO2 -> decrease PAO2
    • hypervent -> increase VA -> decrease PACO2 -> increase PAO2
  19. Fick’s Law for gas transfer across alveolar- capillary membrane
    • V = D (P1 – P2)
    • = A/T x S/sqrt(MW) x (P1-P2)
    • A: surface area
    • T: membrane thickness
    • S: solubility
  20. Hypoxic Pulmonary Vasoconstriction:
    blood flow diverted from poorly ventilated regions to better ventilated lung regions
  21. Medullary respiratory centers
    • Dorsal: N. solitarious (I)
    • Ventral: N. ambiguous (E and I)
  22. Pontine respiratory centers
    • Lower pons: apneustic center
    • Middle pons: pneumotaxic center
  23. Carotid body
    • sensitive to low PaO2 < 60mmHg (dissolved only)
    • innervated by CN IX
    • highest blood flow per gram tissue in the body
  24. Central chemo receptor
    • sensitive to inc. PaCO2
    • ventral medulla
    • main drive of respiration
  25. Adaptation to high altitude
    • ventilation increases
    • polycythemia (inc RBC) and Hb (kidney produces eyrthropoietin in response)
  26. Renal circulation
    • renal artery
    • arcuate artery
    • afferent arteriole
    • capillary glomerulus
    • efferent arteriole
    • peritubular capillaries
    • vasa recta
    • arcuate vein
  27. renal plasma flow (RPF) =
    • (1-hct)xRBF
    • hct: hemocrit, percentage of blood taken by cells, mainly RBC; normally 40%
    • RBF: renal blood flow; about 20% of cardiac output, 5L/min x 20% = 1L/min
  28. glomerula filtration rate
    • 120ml/min
    • generates an ultrafiltrate of plasma
  29. filtration fraction (FF) =
    glomerula filtration rate / renal plasma flow
  30. GFR: Starling forces
    • GFR = k x (ΔP - Δπ)
    • ΔP = PGC - PBS
    • Δπ = πGC - πBS
    • P: hydrostatic pressure; considered same across the duct.
    • p: oncotic pressure; considered zero for the filtrate
    • GC: glomerular capillary
    • BS: Bowman's space
    • never less than 0 (absorption)
  31. effect of prostate hypertrophy on GFR
    how about hypoproteinemia
    • PBS inc, dP dec, GFR dec
    • pGC dec, dp dec, GFR inc
  32. Clearance C:
    • CP=UV
    • C=UV/P
    • P: concentration of a substance in plasma
    • U: concentration of the same sub in urine
    • V: amount of urine excreted in unit time
  33. for substance only filtered (no resorption or secretion)
    • GFR x P = UV
    • GFR = UV/P
    • inulin
    • creatinine
  34. for substance fully excreted through one passage
    • RPF x P = UV
    • RPF = UV/P
    • RBF = RPF/(1-hct)
    • PHA (Para-AminoHippuric acid)
  35. Proximal tubular resorption
    • 2/3 of electrolytes and water, most glucose
    • basolateral side:
    • Na/K-ATPase, Na+ outward
    • glu chan
    • apical side:
    • Na+ chan
    • glu/Na-cotransporter
    • Cl- follows Na
    • Water follows electrolytes
  36. Proximal tubular HCO3- resorption
    • apical:
    • Na/H exchanger, inc H+ in lumen
    • HCO3-+H+->->CO2
    • CO2 diffuse across, converts back to HCO3-

    • basolateral:
    • Na/HCO3 cotransporter or Cl/HCO3 exchanger
  37. Na sensing mechanism
    macula densa (part of JGA, located in distal tubule) sense high [Na] -> stim juxtaglomerula cell (in afferent arteriole) secretes renin -> ... -> aldosterone secreted -> increase Na retention at collecting duct
  38. K+ balance
    90% absorbed before distal tubule
  39. Nephrogenic diabetes insipidus
    kidney has no response to ADH
  40. How is the osmotic gradient created in kidney?
    • Countercurrent multiplication
    • Diluting segment:
    • thick ascending limb of loop of Henle
    • Na-K-2Cl symporter moves salt out
    • only segment impermeable to water
  41. plasma pH w/ the buffer of H2CO3 =
    • pKa + log(A/HA)
    • =6.1 + lg([HCO3]/0.03PCO2) = 7.4
    • [HCO3]=24mM
    • PCO2=40mmHg
  42. acid-base balance
    • buffer
    • respiratory (quick)
    • renal (slow)
  43. renal regulation on H+
    • NH3 most important, adjustable
    • HPO42-
    • HCO3- lease important
  44. acid-base disturbance
    pH=pKa (6.1) + lg([HCO3-]/0.03PCO2)

Card Set Information

Author:
akhan
ID:
317644
Filename:
Physiology - Final
Updated:
2016-03-21 01:30:30
Tags:
physiology
Folders:

Description:
physiology final prep
Show Answers:

Home > Flashcards > Print Preview