Electrictiy
Home > Flashcards > Print Preview
The flashcards below were created by user
Anonymous
on
FreezingBlue Flashcards. What would you like to do?

SI unit for Current
Ampere (A); 1 ampere=1 coulomb per sec=1 c/s

Current Density
(J)=I/A=n_{l}lv_{d}=(A/m^{2})

Conductivity (rho)
rho=n_{l}l^{2}r/m

Electron current
i_{e}=N_{e}/(delta) t where N_{e}=#electons

Electron Current in Wire
ie=n_{e}Av_{d }with SI unit s^{1}

Electron Drift Speed
v_{d}= (e (gamma) /m) E

Energy Density
u_{E}=u_{c}/A_{d}=(Epsilon not)/2 x E^{2}
units (J/m^{3})

Dielectric insulator inside a capacitor
Kappa==(Epsilon not)/E

Potential Difference w/in Dielectric
(delta) V_{c}=((delta) Vc)_{0}/Kappa

Capacitance
C=Q/(delta) Vc = (epsilon not x A) / d

Charge on Capacitor
Q=C delta V_{o}

Parallel Capacitor
 C_{eq}=C_{1}+C_{2}+C_{3}=...
 Greate than single

Series Capacitor
 C_{eq}=(1/C_{1}+1/C_{2}+1/C_{3}+...)^{1}
 Less than single

Energy stored in capacitor
U_{c}=Q^{2}/2C = 1/2 C(deltaV_{c})^{2} = epsilon not/2 (A_{d}) E^{2}


Potential Difference
delta V = V_{f}V_{i}=  (from i to f) E X ds

Potential (electric field comp in s dir)
E_{s}= dV/ds

Kirchhoff's Loopsum of all potential differences in a loop/closed path
delta V_{loop}=sigma ( delta V)= 0

Capacitance
C= Q/detla V_{c}=Epsilon not x A / d
SI unit= farad